
Deobfuscation of Virtualization-Obfuscated Software

A Semantics-Based Approach

Kevin Coogan
Department of Computer

Science
University of Arizona

P.O. Box 210077
Tucson, AZ 85721-0077

kpcoogan@cs.arizona.edu

Gen Lu
Department of Computer

Science
University of Arizona

P.O. Box 210077
Tucson, AZ 85721-0077

genlu@cs.arizona.edu

Saumya Debray
Department of Computer

Science
University of Arizona

P.O. Box 210077
Tucson, AZ 85721-0077

debray@cs.arizona.edu

ABSTRACT
When new malware are discovered, it is important for researchers
to analyze and understand them as quickly as possible. This task
has been made more difficult in recent years as researchers have
seen an increasing use of virtualization-obfuscated malware code.
These programs are difficult to comprehend and reverse engineer,
since they are resistant to both static and dynamic analysistech-
niques. Current approaches to dealing with such code first reverse-
engineer the byte code interpreter, then use this to work outthe
logic of the byte code program. This outside-in approach produces
good results when the structure of the interpreter is known,but can-
not be applied to all cases. This paper proposes a different approach
to the problem that focuses on identifying instructions that affect
the observable behavior of the obfuscated code. This inside-out ap-
proach requires fewer assumptions, and aims to complement exist-
ing techniques by broadening the domain of obfuscated programs
eligible for automated analysis. Results from a prototype tool on
real-world malicious code are encouraging.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive Soft-
ware

General Terms
Security

Keywords
virtualization, deobfuscation, dynamic analysis

1. INTRODUCTION
Recent years have seen an increase in malware protected against

analysis and reverse engineering using virtualization obfuscators
such as VMProtect [16] and Code Virtualizer [11]. Such obfusca-
tors embed the original program’s logic within the byte codefor a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11,October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

(custom) virtual machine (VM) interpreter. It is difficult to recover
the logic of the original program because an examination of the ex-
ecuted code reveals only the structure and logic of the byte-code in-
terpreter. Additionally, there may be an element of randomness in-
troduced into the construction of the custom VM, so that successful
reverse engineering of one instance of a virtualization-obfuscated
program does not help us deal with a different program obfuscated
using the same obfuscator. This makes the task of reverse engineer-
ing virtualization-obfuscated malware code a challengingone.

Existing techniques for reverse engineering of code protected by
virtualization-obfuscation [6, 12, 13] first reverse engineer the VM
interpreter; use this information to work out individual byte code
instructions; and finally, recover the logic embedded in thebyte
code program. This outside-in approach is very effective when the
structure of the interpreter meets certain requirements. However,
when the interpreter uses techniques that do not fit these assump-
tions (e.g., direct-threading vs. byte-code interpretation), the deob-
fuscator may not work well. This approach may also not general-
ize easily to code that uses multiple layers of interpretation, since it
may be difficult to distinguish between instruction fetchesfor vari-
ous interpreters.

This paper presents a prototype tool that uses a different ap-
proach to dealing with virtualization-obfuscated programs. We note
that for modern operating systems, programs interact with the sys-
tem through a predefined interface, typically implemented as sys-
tem calls. We also note that malicious code must use this interface
if its behavior is to be meaningful or impactful in any way. We
identify instructions that interact with the system, then use various
analyses to determine which instructions affect this interaction, ei-
ther directly or indirectly. The resulting set of instructions is an ap-
proximation of the original code, while the remaining instructions
approximate the set of instructions that are semantically uninterest-
ing and can be discarded.

The previous work mentioned above produces excellent results
on those programs that match their assumptions. Because ourap-
proach does not attempt to recover the original instructions, but
rather attempts to capture the relevant behavior of the code, it will
not match those results for accuracy. However, our approachis
more general, and can be applied to a wider range of obfuscation
techniques. Thus, it should be seen as complementing existing ap-
proaches by providing information when others cannot.

The remainder of the paper is organized as follows: Section 2
describes the problem in detail and our approach to the analysis,
Section 3.1 describes our methodology for evaluation of ourresults,
Section 3.2 presents the results of our analysis, Section 5 discusses
related works and Section 6 presents our conclusions.

2. DEOBFUSCATION
Static analysis of code that has been obfuscated using virtual-

ization reveals only the structure of the virtual machine interpreter.
Similarly, the dynamic trace of a virtualization-obfuscated executable
is a mix of virtual machine interpreter instructions and instructions
performing the work of the original program. It is often difficult
to see the boundaries between these two sets of instructionswhen
looking at the trace. This task becomes even harder in the case that
multiple interpreters are used, or when the interpreter dispatch rou-
tine performs multiple operations (e.g., decrypting the address of
the next instruction).

Our approach is to try to identify instructions that are known
to be part of the original code, and eliminating those that are not,
while not assuming any information about the specific structure of
the interpreter or its dispatch routines. In the remainder of this
section, we present an outline of our overall approach, thendiscuss
the parts of this approach that are original work in further detail.

2.1 Overall Approach
The analysis of an executable consists of the following steps:

1. Use a tracing tool such as qemu [3], OllyDbg, Ether [5], etc.
to obtain a low level execution trace that provides, at each ex-
ecution step, the address of the instruction executed, details
about this instruction (byte sequence, mnemonic, operands,
etc.), and the values of the machine registers.

2. Identify system calls and their arguments in this trace, using
a database that gives information about arguments and return
values of system calls.1 In general, not all system calls may
be of interest (e.g., those occurring in program start up or
exit code may not be interesting), so we allow the user to
optionally indicate which system calls to consider.

3. Use the available information to carry out analyses on the
instruction trace. These analyses flag instructions that affect
the values of arguments, as well as conditional control flow
and the flow of control to system calls of interest. We refer
to these instructions asrelevant instructions.

4. Build a subtrace from those instructions that have been marked
as relevant. Thisrelevant subtraceapproximates a dynamic
trace of the original, unobfuscated code.

2.2 Value-based Dependence Analysis
To motivate our approach to deobfuscation, we begin by con-

sidering the semantic intuition behind any deobfuscation process.
Obviously, when we simplify an obfuscated program, we cannot
hope to recover the code for the original program for two reasons.
First, in the case of malware we usually do not have access to the
source code. Second, even where source code is available, the pro-
gram may change during compilation, e.g., via compiler transfor-
mations such as in-lining or loop unrolling, so that the codefor the
final executable may be different from (though equivalent to) that
of the original program. All we can require, then, is that thepro-
cess of deobfuscation must be semantics-preserving: i.e.,that the

1Our current implementation uses DLL calls as a proxy for system
calls, primarily because the Microsoft Windows API for DLLsis
better documented and also more consistent across different ver-
sions of the Windows operating system. This generally causes the
analysis to be sound but possibly conservative since not allDLL
calls lead to system calls. It is straightforward to modify this to han-
dle code that traps directly into the kernel without going through a
DLL: it simply requires examining the argument values of instruc-
tions that trap into the operating system kernel, e.g.,sysenter, to
determine the syscall number and hence the system call itself.

code resulting from deobfuscation be semantically equivalent to the
original program.

In the context of malware analysis, a reasonable notion of se-
mantic equivalence seems to be that ofobservational equivalence,
where two programs are considered equivalent if they behave—i.e.,
interact with their execution environment—in the same way.Since
a program’s runtime interactions with the external environment are
carried out through system calls, this means that two programs are
observationally equivalent if they execute identical sequences of
system calls (together with the argument vectors to these calls).

This notion of program equivalence suggests a simple approach
to deobfuscation: identify all instructions that directlyor indirectly
affect the values of the arguments to system calls; these instructions
are “semantically relevant.” Any remaining instructions,which are
by definition semantically irrelevant, may be discarded. The crucial
question then becomes that of identifying instructions that affect
the values of system call arguments: we discuss this issue inmore
detail in the remainder of this section.

The goal of dependence analysis is to work back from system
call arguments to identify all instructions that directly or indirectly
affect the values of those arguments. At first glance, this seems to
be a straightforward application of dynamic program slicing [14],
but this turns out to not be the case. The problem is that slicing
algorithms follow all control and data dependencies in the code (an
instructionI is control-dependenton an instructionJ if the execu-
tion of J can affect whether or not control goes toI). Since the
instructions that implement a byte-code operation are all control-
dependent on the dispatch code in the interpreter, it follows that the
code that evaluates system call arguments and makes the system
calls will also be control dependent on the interpreter’s dispatch
code. The net result is that slicing algorithms end up including
most or all of the interpreter code in the computed slice and so
achieves little in the way of deobfuscation.

We use a different approach where we initially follow only data
dependencies, then consider control transfers separately. We use a
variation on the notion ofuse-definition(ud) chains [2]. Conven-
tional ud-chains link instructions that use a variable (register, mem-
ory location) to the instruction(s) that define it. While ud-chains are
usually considered in the context of static analysis of programs, it
is straightforward to adapt them to dynamic execution traces. In
this case, we must match each use of a variable with the instance of
the instruction in the trace that defines it.

Because they do not follow control dependencies, ud-chainsavoid
the imprecision problem encountered with program slicing (control
flow has to be identified separately in the deobfuscated code.) How-
ever, conventional ud-chains have precision problems of their own.
Consider the following instruction sequence:

/*I1*/ mov eax, [ecx+edx]
/*I2*/ push eax
/*I3*/ call print

The argument to theprint call is loaded from memory by instruction
I1, then pushed onto the stack by instructionI2. A conventional
ud-chain calculation would show that instructionI1 usesecx, edx,
and the memory address pointed to by adding these values together.
However, only the memory address is relevant to thevaluepassed
to the system call. This results in a loss of precision. What we
should do, instead, is disregard the registers used for the address
computation and trace back to find the (most recent) instruction
that wrote to the memory location being accessed.

To deal with this issue, we define a notion ofvalue-based depen-
dence. The essential intuition here is that we focus on the flow of
valuesrather than on details of the intermediate computations of

the addresses of these values. This is done by redefining the set of
locations used by an operand as follows:

use(op) =
if op is a registerr then {r}
else ifop specifies a memory addressa then {a}
else∅;

We then identify the instructions that arerelevantto the system
calls executed by the program as follows. For each system call in
the execution trace, we use ABI information to identify the argu-
ments that are being passed; we initialize a setS to the locations
holding these arguments. We then scan back in the trace, starting
at the the system call, and process each instructionI as follows: if
I defines a locationℓ ∈ S (which may be a register or a memory
location) thenI is marked asrelevant, ℓ is removed fromS, and the
set of locations used byI according to our notion of value-based
dependencies (seeuse() above) is added toS. This backward scan
continues untilS becomes empty or we reach the beginning of the
trace. The effect of the value-based dependence analysis described
above is that when an instructionI accesses a value from a memory
locationa, the dependence analysis works back to find the nearest
previous instruction that wrote to locationa but ignores the details
of how the addressa was computed byI .

Under certain conditions, the above algorithm may suffer from a
lack of precision. The problem arises when the parameter in ques-
tion is a pointer to a structure of some sort, and the functioncall
is using an element of that structure. The trace-back based on the
pointer itself only reveals the initialization of the structure. With-
out knowing the size of the structure, we will not recognize when
elements of the structure are being set. To solve this problem, prior
to performing our analysis, we must analyze the trace of the sys-
tem calls to identify what values are used, and if those values are
referenced using the pointer parameter.

For each system call, we create a setP, which holds all of the lo-
cations (register or memory locations) which might potentially be
pointers, and a setM, which holds all of the memory locations that
have been accessed through a pointer. Initially,P holds the stack
locations of the parameters to the call, andM is empty since we
have not encountered any uses yet. We scan forward through the
trace of the system call and look at each instructionI . Typically, I
will uses some number of locations (i.e., register and memory lo-
cations), which we will callℓ1 , ℓ2 , . . . , to define some location,
which we will call ℓd. If I uses some locationℓi ∈ P to defineℓd,
thenℓd may potentially also be a pointer and is added toP. Fur-
thermore, ifℓi is known to access a memory location (e.g.,eax in
the instruction “move ebx, [eax]), then the valuev stored atℓi is
also added to setM, since we know that it is a memory location
accessed through a suspected pointer. Finally, if instruction I de-
fines a locationℓd ∈ P, andI does not use any values fromP, then
we can assume thatI is redefiningℓd as something other than a
pointer that we are tracking, and we removeℓd from P. The algo-
rithm continues untilP is empty, or until the end of the system call
trace is reached. At this point, the setM contains a set of memory
locations that we suspect are part of structures pointed to by one of
the system call parameters. These locations are added to thesetS
above as part of the parameters passed to the call.

2.3 Relevant Conditional Control Flow
Value-based dependence analysis identifies the instructions that

compute the values of system call arguments, but not the associ-
ated control flow instructions. The problem with identifying rele-
vant control transfer instructions in virtualized code is that control
transfers may be handled by the same dispatch code that handles

other VM instructions. In the popular IA-32 (x86) architecture
(the target of our analysis tool), conditional statements are typi-
cally implemented by setting the appropriate condition code flags in
the designatedeflags register, then executing a conditional branch
statement, e.g.,jnz that reads this register. The target of the branch
statement is either the address given in the instruction or the address
of the next instruction in the code, depending on the value stored in
this eflags register. Hence, to recognize when conditional control
flow is occurring, we can examine all control flow statements (e.g.,
jumps, conditional jumps, calls) to see how their target addresses
are calculated. Any control flow instruction whose target address
calculation is conditionally dependent on some previous value is an
implementation of a conditional branch statement.

It is possible that conditional logic will not be implemented ex-
actly as described above in virtualization-obfuscated code. For ex-
ample, VMProtect eliminates the branch statements and moves the
value of the flags register to other general purpose registers for ma-
nipulation. However, while theoretically possible, we arenot aware
of any obfuscation programs that implement conditional logic with-
out the use of the value of theeflags register at some point in the
code. Hence, we can examine target address calculations forany
dependence on the value of theeflags register as an indication of
conditional dependence. Even assuming that the flags register is
used, there are still multiple ways to use this value to implement
conditional logic. Thus, our approach must be general enough to
handle any such implementation. We handle this problem through
the use of an equational reasoning system that was developedin-
house to handle x86 assembly code [4].

Our equational reasoning system translates each instruction in
the dynamic trace into an equivalent set of equations. We note that
in the dynamic trace, there may be multiple equations that define
the same register or memory location. To maintain the original
behavior of the trace, we number the variables as follows. A vari-
able appearing on the left hand side of an equation (i.e., a variable
that is being defined) is numbered according to the order thatits
instruction appears in the trace. A variable appearing on the right
hand side of an equation (i.e., a variable that is being used)is num-
bered according to the instruction that defined it. These defining
instructions are found by searching backwards through the trace to
identify where the definition came from.

. . .
/*I10*/ mov ebx, 0x0
/*I11*/ pop eax
/*I12*/ add ebx, eax
/*I13*/ pop eax
/*I14*/ sub ebx, eax

(a)

. . .
ebx10 = 0x0
eax11 = ValueAt(M1000)
esp11 = esp8 + 4
ebx12 = ebx10 + eax11
eflags12 = Flag(ebx10 + eax11)
eax13 = ValueAt(M1004)
esp13 = esp11 + 4
ebx14 = ebx12 - eax13
eflags14 = Flag(ebx12 - eax13)

(b)

Figure 1: Simple example of translating instructions into equiv-
alent equations.

Consider the example in Figure 1. Figure 1(a) gives a snippet
of x86 assembly code, and Figure 1(b) gives the equivalent equa-
tions generated by our system. We are assuming that the valueof

the stack pointeresp before instructionI10 executes is 1000. We
use the notation “ValueAt(M1000)” to indicate the value stored at
memory location 1000. Notice that theeax used in the equations
for instructionI12 is not the same as theeax used in the equations
for instructionI14, as is indicated by our numbering scheme.

Also notice that we are explicitly handling the setting of the
eflags register by generating its own equation. We introduce the
“Flag” operation to indicate the calculation of the flag register value
based on the expression passed as a parameter. So, for instruction
I12, ebx gets the result of addingebx10 to eax11, and theeflags
register gets changed according the result of that same operation.

For our purposes here, we are primarily concerned with the cal-
culation of the target addresses of control flow instructions. Specif-
ically, as described, we need to determine if any component of the
calculation of such a target address is dependent on the value of
some flag calculation. With our equational reasoning system, we
need to generate a simplified expression for the target address at
the point it is used, then check that expression to see if it contains
any calls to the “Flag” operation.

We must also account for the possibility of additional or trivial
conditional logic added for the purpose of obfuscation. Theobfus-
cation routine cannot change the behavior of the original program,
but it can add branch statements that are always true or always false,
to try to confuse analysis. For this reason, we can eliminateany
conditional logic that reduces to a constant boolean value.

Next, we will examine several examples of increasing complex-
ity to show how our system correctly identifies these conditional
dependencies. First, we look at the simple example in Figure2(a),
where the normal branch instructions are used to implement condi-
tional control flow. We know that thejnz instruction uses the value
of theeflags register to decide whether or not to branch, so we add
a new equation at the point of thejnz instruction to represent the
value of theeflags register.

. . .
/*I10*/ cmp ebx, eax
/*I11*/ mov ebx, 0x0
/*I12*/ mov eax, 0x10
/*I13*/ jnz 10000

(a)

. . .
eflags10 = Flag(ebx7 cmp eax6)
ebx11 = 0x0
eax12 = 0x10
eflags13 = eflags10

(b)

Figure 2: Identifying control dependencies with branch in-
structions.

As seen in Figure 2(b), when we trace back to find the definition
of the right hand side, we see that it is the value ofeflags from
instructionI10 that is being used. By substituting the definition
of eflags10, we see that the value of the flags register used by the
conditional jump instrution is “Flag(ebx7 cmp eax6).”

Next, we consider a case where the standard branch instruc-
tions are not used. This case would be anticipated when analyzing
virtualization-obfuscated code, since the dispatch routine typically
handles all control flow. Consider the code snippet in Figure3(a).
We see that the indirect jump of instructionI16 is indexing into a
table located at address0x10000. The value ofeax indexes into the
table some number of 4-byte values. InstructionI10 setseax equal
to some index value to be used. InstructionsI11 throughI15 per-
form some comparison that sets the value of the flags register, then
moves the flag value into theebx register, and masks the value. The

effect is as follows. If the result of the comparison turned on the
“zero” flag, then the value of theebx register after instructionI14
is one, otherwise, it is zero. The value inebx is then added to the
index value stored ineax such that the actual index value used in
the jump depends on the result of the comparison in instructionI11.
In the context of virtualization-obfuscated code, the index value is
the byte code of the next instruction, and the table containsthe ad-
dresses of virtual instruction implementations.

. . .
/*I10*/ mov eax, index
/*I11*/ cmp ebx, ecx
/*I12*/ pushf
/*I13*/ pop ebx
/*I14*/ and ebx, 0x1
/*I15*/ add eax, ebx
/*I16*/ jump [eax*4 + 0x10000]

(a)

. . .
eax10 = index
eflags11 = Flag(ebx4 cmp ecx3)
esp12 = esp9 - 4
ValueAt(M1000)12 = eflags11
ebx13 = ValueAt(M1000)12
ebx14 = ebx13 & 0x1
eax15 = eax10 + ebx14
target16 = eax15 * 4 + 0x10000

(b)

Figure 3: Identifying control dependencies with no branch in-
structions.

To handle this case, we recognize the control flow statement is
an indirect jump and depends on the target address calculation. We
generate an equation for the target address calculation as seen in
Figure 3(b), and simplify it as described before. The resultis given
in Figure 4, and shows that the target address depends on the re-
sult of the “Flag” operation. Thus, the indirect jump is acting as a
conditional control flow statement.

target16 = index + (Flag(ebx4 cmp ecx3) & 0x1)

Figure 4: Result of target address simplification from Figure 3.

Finally, we examine a case inspired by the conditional control
flow implementation that is used in VMProtect. We begin with
the example in Figure 3, and add the use of indirection. In the
code snippet of Figure 5(a), two index values are stored to adjacent
locations in memory. The same trick is then used to conditionally
load either the address of the first index or the address of thesecond
index into theesi register. Finally, the value stored at the location in
esi is loaded into theeax register, and the indirect jump calculates
the address in the table to use.

For this example, let’s assume that it wasindex1that was used
in the calculation of the target address, and that the value of ad-
dresswas 5000. When we simplify our equation for target20, we
will substitute “ValueAt(esi18)” for “ eax19.” By our assumption,
we know thatesi18 holds the value 5000, so we substitute the value
at memory location 5000 which isindex1from instructionI10. Our
simplified expression for the target is then “target20 = index1* 4
+ 0x10000.” From this result, it appears that this jump is notim-
plementing conditional control flow. However, this is wrong. We
know from our analysis of the code that the result of the compare
instruction determines whetherindex1or index2 is used to index
into the table. The problem is that the conditional element has been
hidden by a layer of indirection. When we calculate an expression
for the target address, we are only using direct dependencies.

. . .
/*I10*/ mov [address], index1
/*I11*/ mov [address + 4], index2
/*I12*/ mov esi, address
/*I13*/ cmp ebx, ecx
/*I14*/ pushf
/*I15*/ pop ebx
/*I16*/ and ebx, 0x1
/*I17*/ mul ebx, 0x4
/*I18*/ add esi, ebx
/*I19*/ mov eax, [esi]
/*I20*/ jump [eax*4 + 0x10000]

(a)

. . .
ValueAt(address)10 = index1
ValueAt(address + 4)11 = index2
esi12 = address
eflags13 = Flag(ebx4 cmp ecx3)
esp14 = esp9 - 4
ValueAt(M1000)14 = eflags13
ebx15 = ValueAt(M1000)14
esp15 = esp14 + 4
ebx16 = ebx15 & 0x1
ebx17 = ebx16 * 0x4
esi18 = esi12 + ebx17
eax19 = ValueAt(esi18)
target20 = eax19 * 4 + 0x10000

(b)

Figure 5: Example of code using indirection to hide control de-
pendencies.

To resolve this issue, we must account for any number of lay-
ers of indirection. We could analyze the code, as we did here,and
recognizing that it was address 5000 that was used, and not 5004.
However, this requires understanding how the code works at each
step, and will quickly become more difficult as code complexity
increases. Instead, we add new equations to our set that define
where the calculation of memory addresses come from. We in-
troduce a new variable for each memory access, named with the
prefix “LOC” followed by the actual address that was accessed.
Then a new equation is added that sets the value of that new vari-
able according to how the calculation was done. Each variable is
labeled with the order number as before to guarantee that they are
unique. Figure 6 shows the addition of the memory location equa-
tion (marked *) for the memory access of instructionI19 in Figure
5. In practice, we would add similar equations for all memoryac-
cesses. These are omitted here for the sake of clarity.

. . .
ValueAt(5000)10 = index1
ValueAt(5004)11 = index2
esi12 = 5000
eflags13 = Flag(ebx4 cmp ecx3)
esp14 = esp9 - 4
ValueAt(M1000)14 = eflags13
ebx15 = ValueAt(M1000)14
esp15 = esp14 + 4
ebx16 = ebx15 & 0x1
ebx17 = ebx16 * 0x4
esi18 = esi12 + ebx17

(*) LOC_500019 = esi18
eax19 = ValueAt(LOC_500019)
target20 = eax19 * 4 + 0x10000

Figure 6: Equations augmented to handle indirection.

Now, for each memory access that is used to calculate the tar-
get address, we can start a new simplified expression for the ad-
dress calculation. If this calculation shows some dependency on

the “Flag” operation, then we know that the target address isin-
directly conditionally dependent. Any memory access simplified
expression that does not show any conditional dependence can be
discarded because it is irrelevant. Returning to our example in Fig-
ure 5, we calculate all simplified expressions for memory access
and get the results shown in Figure 7. Here we see the conditional
dependence that we expect, and can mark the indirect jump of in-
structionI20 as implementing conditional control flow.

LOC_500019 = address +((Flag(ebx4 cmp ecx3) & 0x1) *4)
target20 = index1* 4 + 0x10000

Figure 7: Result of target address simplification from Figure 5.

To handle multiple layers of indirection, we must account for
all dependencies. We use an algorithm that propagates information
forward as it scans over the equations in the trace. At each step,
all control flow dependencies, direct and indirect, are collected as
described above and associated with that equation. Later, if that
equation is used in a target address calculation, the complete list of
dependencies is known and can be scanned for conditional depen-
dencies. The algorithm is presented in Figure 8.

Input : List of Equations: EqnList
Output : List of simplified expressions: SimpEqnList

Deps= ∅
SimpEqnList= ∅
for eachequationin EqnList:

if IsConditional(equation)
then

Deps= Deps∪ equation
endif
MemAccesses= GetMemoryAccessesForEqn(equation)
for eachmemAccin MemAccesses:

Deps= Deps∪ memAcc→deps
endfor
ExprList= SimpEqnList∪ equation
for eachterm in equation:

replacement= FindReplacement(EqnList, term)
if replacement!= ∅
then

ReplaceTerm(term, replacement)
Deps= Deps∪ replacement→deps

endif
equation→deps= Deps

endfor
endfor
return SimpEqnList

Figure 8: Pseudocode of simplified expression and conditional
dependency identification

2.4 Relevant Call-Return Control Flow
Functions are important mechanisms for code structuring, and

are often the basic building blocks of a program during the design
phase. Identifying functions during reverse-engineeringand deob-
fuscation, then, would be a useful step towards program compre-
hension. In the case of unobfuscated, compiler generated code, this
can often be a very straightforward task. For example, x86 compat-
ible compilers such asgcc will typically use a standard preamble
for functions that saves the base pointer, then points the base pointer
to the top of the stack. Knowing this information, one can search
through the code for these instructions and subsequently identify
the beginning of many functions in the code. However, this tech-
nique is only a convention, and in the case where the code is tobe
purposefully obfuscated, it need not be followed. This section dis-
cusses the behavior of function calls and returns in variousforms of

obfuscation, their essential properties, and explains thetechnique
we propose for identifying them.

� �

��������������������

����

�����������	
	����

�����������
�������������

����

�����������	��������

�������������

����

������������
�������������

����

Figure 9: examples of indirect jump

2.4.1 Behavior of Function Calls and Returns
In general, compiler generated, unobfuscated code uses theas-

sembly instructionscall and ret for function calls and returns, re-
spectively. However, knowing how these instructions work allows
one to use them for other purposes. For example, thecall instruc-
tion pushes the address of the next instruction onto the stack, then
jumps to its target address. The code in Figure 9(a) uses thecall to
jump to code at another location, then discards the return address,
effectively implementing an indirect jump. A similar technique is
often used inposition independent code(PIC-code) by using acall
instruction with a target address offset of 0. The effect is that the
address of the next instruction is pushed onto the stack. As another
example, theret statement pops an address off the stack, then jumps
to it. The code in Figure 9(b) pushes a hard-coded value onto the
stack then executes aret. The effect, as before, is equivalent to that
of an indirect jump.

� �

�����������������������������

�������������	
�����������

�����������������

����

�������������	
������������

������������������������

����������	
�����

��������������������

�����������������	����������������

�������������	
�����������

�����������������

��

�������������	
��������������

������������������������

����
��������	
�����

���������������������

��������������	
������������

������������������������

��

�������������	
�����������

�����������������

���������
������	
�����

��������������������

�����������	
�����������

�����������������	����������������

�������������	
�����������

�����������������

��

�������������	
���������������

������������
����

������������	����������������

������������
��������	
�����

Figure 10: Examples of function call/return obfuscation

Similarly, we can use other instructions to simulate the behavior
of a function call and return. Figure 10(a) presents an unobfuscated
function call/return pair, as might typically be seen in compiler
generated code. During execution, thecall instruction at address
0x1000 pushes the address of the next instruction0x1004 onto the
runtime stack, then branches to the callee by copying the function
address0x5000 to the instruction pointer. The callee, when fin-
ished, pops the return address from the stack into the instruction
pointer, resuming execution at the instruction immediately follow-
ing the initial call. Figure 10(b) shows a semantically equivalent
code snippet that uses simple obfuscation. Thecall instruction has
been replaced by apush instruction that saves the return address to
the stack, and ajmp instruction that copies the call target to the in-
struction pointer. Figure 10(c) gives a slightly more obfuscated ver-
sion of the same code. Here, the target of the call and the return are

both saved to a register first, then ajmp instruction moves the value
in the machine register to the instruction pointer. These three ex-
amples suggest a possible necessary condition for call statements –
that is, that they push the address of the textually following instruc-
tion onto the runtime stack, then copy the target of the call to the
instruction pointer. Existing work [8] uses this assumption to iden-
tify function boundaries, and is capable of detecting the call/return
pairs in Figures 10(a) - (c).

However, Figure 10(d) gives an example of a call/return pairthat
does not follow the above assumption. Here, the memory layout
has been changed such that the call is executed by control “falling
through” to the callee without explicit branching. The return ad-
dress, which is initially pushed onto the stack, points to aninstruc-
tion that is no longer adjacent in memory to the call instruction.
This code would not be recognized as a call/return pair by existing
techniques; however, from a dynamic point of view, it arguably has
the identical behavior of the code in Figure 10(b). Furthermore,
there is no technical reason that the return address has to bestored
on the runtime stack. A program could easily maintain its own
stack-like data structure apart from the system stack. In this case,
read and write operations on the memory of this separate structure
would substitute forpush andpop operations in the traditional im-
plementation. Finally, the value saved to memory does not even
need to be the actual return address. Rather, it could be derived
from the return address by some invertible transformation,and re-
stored to original form at the last minute before the return.We
have witnessed exactly these obfuscations in our work analyzing
programs obfuscated by VMProtect and CodeVirtualizer.

2.4.2 Identification Approach
In order to correctly identify function call/return pairs in obfus-

cated code, we must first identify the essential properties of such
pairs that do not rely on unnecessary conditions. Traditionally, a
call is indicated by pushing the return address onto the runtime
stack, and branching to the callee. The return is effected byre-
trieving this saved address and copying it to the instruction pointer.
Our examples in Figure 10 demonstrate that many of these opera-
tions, such as saving the return address to the runtime stack, are not
necessary but rather convenient conventions used by compilers that
do not try to hide the functionality of code. When we try to identify
what is common to all cases, it is much more general. We observe
that a return address, in some form, must be saved by the caller
before execution hits the target function. Furthermore, the return
address must be retrieved by the callee, and used so that flow of
control begins at this address after execution of the function. This
suggests the following semantics:

Call: a code address is saved at the call site.
Return: the saved address is used for a control transfer at the re-

turn point.

Notice that calls and returns are defined as a pair of instructions,
such that they cannot be identified individually. Based on this def-
inition, the only tie between the call and return is the function’s
return address. We use this as a necessary condition for function
call/return pairs. This approach handles all of the cases presented
in Figure 10. However, we point out that our definition does have
one, known shortcoming. In the case where a function pointer(i.e.,
address) is stored in memory, then used later to jump to that func-
tion, these instructions will be identified as a call/returnpair. Our
current results are virtually unaffected by this case, since the origi-
nal source makes little or no use of function pointers, and the code
is compiled on a commercial compiler. However, we are currently
working to find a acceptable solution to the problem.

Next, we show why the above condition, while necessary, is not
sufficient. Virtualized code presents an additional and significant
challenge. First, because the interpreter makes use of the afore-
mentioned techniques such as a simulated stack in place of the run-
time stack. More importantly, because the same instructionused
by the interpreter to implement byte-code dispatching can be used
to implement function calls and returns. Figure 11 presentsa frag-
ment of a byte-code dispatching routine generated by VMProtect
(instructions unrelated to dispatching logic are ignored). In this ex-
ample,esi is used as the VM’s instruction pointer by the interpreter.
InstructionsI1 throughI4 load the encrypted byte-code fromesi,
decrypt it, thenI5 uses it as an index to locate the encrypted address
of a byte-code handling subroutine in a dispatching table. Instruc-
tion I6 decrypts the address, and eventually saves it at the top of the
runtime stack. Finally, aret instruction is used–similar to the exam-
ple in Figure 10(b)–to jump to the byte-code handling subroutine.

/*I1*/ mov al, [esi]
/*I2*/ ror al, 0x4
/*I3*/ add al, 0x3e
/*I4*/ neg al
/*I5*/ mov edx, [eax*4+0x401e34]
/*I6*/ add edx, 0x5216a67c
/*I7*/ mov [esp+0x28], edx
/*I8*/ pushfd
/*I9*/ push dword [esp+0x30]
/*I10*/ ret 0x34

Figure 11: Examples of byte-code dispatching in code obfus-
cated using VMProtect

Typically, a similar set of dispatch instructions is used for each
virtual instruction encountered by the interpreter. This code clearly
meets the “save and use” of a target address definition that we
present above. In this case, each iteration of the interpreter would
be identified as a call/return pair, which is clearly not whatwe want.
To eliminate these false positives, we add one additional step based
on the concept of relevant instructions introduced earlier. The idea
behind identifying instructions that contribute to the value of sys-
tem calls is to separate the instructions of the virtual machine from
the those of the original code. Thus, any call/return pair for which
there are no relevant instructions in the call are semantically irrel-
evant, and can be ignored. We present the previous definitionof
calls and returns, along with the condition that there be at least one
relevant instruction in the function call, as necessary andsufficient
conditions for identifying call/return pairs.

While these conditions may be debatable, we argue that func-
tions are not strictly necessary for the implementation of algorithms
as computer code. Rather, they are abstractions that allow human
programmers to more easily design and implement solutions.As
such, it may be possible to generate assembly level code thatmeets
our definition of a call/return pair, that was not intended bythe pro-
grammer as an actual call to a function. Such cases are inevitable
when analyzing the implementation of something that is, by defini-
tion, an abstraction. In these cases, we believe that any pairs that
meet our definition are as good as intended call/return pairs.

With these conditions, identifying function call/return pairs be-
comes straightforward: identify all the address save/use pairs as
candidates of function call/return pairs, then remove candidates that
enclose no relevant instructions (as previously identifiedby value-
based dependence analysis). The algorithm is shown in Figure 12.

2.5 Relevant Dynamic Trace
The final step is building the relevant subtrace. We use order

numbers to combine the results of the previous steps in a meaning-

Input : T : Trace
Output : P : List of identified call/return pairs
for u = sizeof(T) to 1 do:

if instructionT[u] is indirect jump to addressd
AND T[u] is not marked asSAVE
AND T[u] is not used as a DLL call

then
s= u;
relevant_count= 0
while s≥ 1 do:

if T[s] is relevant
then

relevant_count++;
if T[s] initially savesd
then

markT[s] asSAVE;
markT[u] asUSE;
if relevant_count> 0
then

/* call/return found */
save(s, u)in P;

break;
else

s--;
else

continue;
return P;

Figure 12: Pseudocode of function call/return identification al-
gorithm

ful way. The order number is a unique number for each instanceof
an instruction in the original dynamic trace that represents the order
that instruction appears. Instructions labeled relevant because they
contributed to the value of the system call parameters are added to
the relevant subtrace in order. For call/return pairs, we add stan-
dardcall andret instructions at the appropriate locations, regardless
of the obfuscated implementation. This works well because the
original program is typically generated by a compiler usingstan-
dard conventions. Similarly, for conditional control flow,we add a
generic branch statement that will match with any standard branch
statements.

3. EXPERIMENTAL EVALUATION

3.1 Experimental Methodology
The evaluation of our approach to deobfuscation presents several

significant problems that must be addressed. In essence, these prob-
lems point back to our previous discussion of program equivalence
(see Section 2.2). We have argued thatobservational equivalenceis
a reasonable goal, but testing for such an equivalence can bediffi-
cult. It is necessary to identify the system calls,andthe instructions
that affect their parameters. To see why the system calls alone, or
the calls and the values of their parameters are not enough, consider
the following example. A program that takes 2 integers and outputs
their sum will produce the same output as a program that takestwo
integers and outputs their product, if the inputs to both programs
are 2 and 2. In its simplest form, the only system call required is
theprint statement.

Even if we take into account the relevant instructions, we need
to account for them properly. Previous work by Sharif,et al [13]
has built control flow graphs for the original program and thedeob-
fuscated program to demonstrate similarity between the two. This
approach becomes more difficult as the programs get larger and
more complex. Furthermore, the idea is less applicable to our work
than theirs. They use knowledge of the interpreter to identify where

original instructions are stored in memory. In those cases where
their code is applicable, they are able to recover most or allof the
original instructions. Since we identify relevant instructions, con-
trol flow graphs of our results will not show the structure resulting
from things like dead code, or branches not taken.

To further complicate this idea, there is no guarantee that the ob-
fuscator will use the same instructions from the original program.
We have seen how VMProtect and CodeVirtualizer rewritecall’s as
other semantically equivalent instructions. It is possible that obfus-
cators may rewrite other instructions. For example, the obfuscator
may unroll some loops to hide part of the control flow graph, or
it may rewrite a multiply operation as a loop of adds so that new
control flow structure is found in the obfuscated code. Quantifying
these differences likely will be impractical.

Unfortunately, we do not have a perfect solution to the problem,
so we present an imperfect solution that we try to tune to whatwe
know about the current state of virtualization-obfuscatedcode. Our
approach is to treat the traces and relevant subtraces as sequences.
We can then use known sequence matching algorithms to compare
one trace to another. This approach is robust to the idea thatwe
cannot recover the original code precisely. Matching will give us
a score for our deobfuscation, regardless of how good our results
are. These scores can be compared on a relative basis. While still
imprecise, a score that is significantly higher than anothershould
correspond to better matching.

This approach is also fairly flexible, and allows us to handlesev-
eral of the issues presented by program equivalence. First of all,
we know that the current virtualization programs that we examined
rewrite library calls and some conditional branches using semanti-
cally equivalent instructions. It is a simple matter to replace library
call implementations with acall statement at the appropriate place
in the trace. Similarly, conditional branch implementations can be
replaced with a genericjcc instruction that will match any condi-
tional branch from the original code. Since the original code is
compiled by a commercial compiler and will typically use a these
standard instructions, this is a reasonable step, and provides good
results. This approach also allows us to handle other instances of
semantically equivalent instructions. For example, it is possible
that an increment instruction could be rewritten as an add instruc-
tion. We can build equivalency classes into our matching algo-
rithm as appropriate, so that an increment matches an instruction
that adds one. In doing so, we are moving closer to the idea of
comparing the behavior of two traces, and not their actual imple-
mentation. This idea is more robust and matches the intent behind
program equivalence, since these cases truly are equivalent.

In addition to considering instruction operation equivalences, we
must also consider how instruction operands are handled. This is-
sue is especially relevant in the context of virtualization-obfuscated
code. Due to the nature of the stack based approach used in the
obfuscation programs we examined, it is possible, even likely, that
the operands of the instructions will be different than in the original
program. For example, in the sample files that we tested, VMPro-
tect uses theesi register as the virtual machine instruction pointer.
In CodeVirtualizer, the addresses of virtual instructionsare always
loaded into theal register. In both cases, the values to be operated
on are stored on the virtual stack, and popped into machine reg-
isters when needed. There is no technical reason why the virtual
machine would try to move these operands into the same registers
that were used in the original code. To handle this, we cannotin-
clude the operands in the matching algorithm. Instead, we use only
the opcode (add, call, etc.) to represent the instruction.

Next, we must consider to what we will match our results. We
need to generate a trace of the original program on the same in-

puts. In order to present an unbiased representation of the original
program, we must limit the amount of processing and analysisthat
is done to this trace. At the same time, we do not want to include
instructions that may taint our results. As a result, we eliminate
all instructions that result from library calls from both the original
trace and the obfuscated trace. There are also a number of instruc-
tions that are part of the operating system initialization,and are
included in every execution trace. We eliminate these instructions
from both the original and obfuscated traces.

The matching algorithm itself is straightforward. Like ouranaly-
sis, we use the knowledge of system calls as a guide. The traces are
broken into segments, where a segment includes all instructions up
to and including the next system call, or the end of the trace.In the
case where the system calls between traces do not match exactly,
we use the subset of calls that form a one-to-one correspondence
between the two traces. Segments are then matched, and all seg-
ments are aggregated. A matching provides a score representing
how many instructions from the original trace appear in either the
obfuscated subtrace or our relevant subtrace.

As a final step, we wish to calculate how effective our analysis
has been. To do this, we must take into account two competing
factors. First, our analysis is trying to identify as many instructions
from the original trace as possible. At the same time, we are trying
to eliminate as many virtual machine instructions as we can.To
this end, we present two numbers for each test. The first, which
we call therelevance score, is the percentage of the instructions
from the original trace that are included in the relevant subtrace.
The second, which we call theobfuscation score, is the percentage
of instructions added by the obfuscator that are correctly excluded
from the relevant subtrace. It is easy to optimize either of these
values individually, but achieving good (i.e., close to 100%) scores
for both is difficult, and will provide a fair evaluation of our work.

Taking into account the above discussion and concerns, we present
the following methodology for evaluating our analysis:

1. Original source code of a test program is compiled into an
executable.

2. A dynamic trace is generated for the original executable on
some input set.

3. An original subtrace is generated by including only instruc-
tions from the executable module.

4. The executable file is protected using an available virtualization-
obfuscation technique.

5. A dynamic trace is generated for the obfuscated version of
the executable.

6. We perform our analysis per Section 2 on the obfuscated sub-
trace, and generate a relevant subtrace.

7. The obfuscated subtrace is matched to the original subtrace,
and scores are produced.

8. The relevant subtrace is matched to the original subtrace, and
scores are produced.

9. The relevance score and obfuscation score are calculated.
10. The process is repeated for all combinations of virtualization-

obfuscation techniques and input test files.

3.2 Experimental Results
To evaluate our analysis, we tested three toy programs simple

enough that results could be checked by hand–an iterative facto-
rial implementation, a matrix multiplaction program with double
nested loops, and a recursive fibonacci implementation. We also
tested two samples of malicious code–BullMoose and hunatcha–
whose C source code was available from the VX Heavens web

Table 1: Results for programs obfuscated with VMProtect
Name Original trace size Obfuscated trace sizeRelevant trace size relevant matching Rel. Score Obf. Score

factorial 92 15365 222 54 58.7% 99.0%

matrx_mult 651 138798 597 345 53.0% 99.8%

fibonacci 151 16438 167 63 41.7% 99.4%

BullMoose 94 6900 376 36 38.3% 95.0%

hunatcha 2226 3327 1347 1347 60.5% 100.0%

md5 2257 77219 5347 1700 75.3% 95.1%

Table 2: Results for programs obfuscated with CodeVirtualizer
Name Original trace size Obfuscated trace sizeRelevant trace size relevant matching Rel Score Obf Score

factorial 92 172249 48720 56 60.9% 71.7%
matrx_mult 651 1571686 270143 454 69.7% 82.8%

fibonacci 151 223053 18560 102 67.5% 91.7%

BullMoose 94 120982 32817 67 71.3% 72.9%
hunatcha 2226 3881611 1066993 1524 68.5% 72.5%

md5 2257 5732714 2613431 2099 93.0% 54.4%

site [1]. Finally, we tested a simple benchmark utility thatperforms
the md5 checksum. The results of our analysis on VMProtect ob-
fuscated code are shown in Table 1 and the results of our analysis
on CodeVirtualizer obfuscated code are shown in Table 2.

Table 1 shows that for most of our test programs, our analysis
is able to identify better than half of the original programsinstruc-
tions, while in all cases eliminating over 90% of the obfuscation
introduced by VMProtect. Similarly, Table 2 shows even better
results, identifying on average about 70% of original program in-
structions from CodeVirtualizer obfuscated code. However, our
analysis fairs worse, eliminating about 75% of obfuscationinstruc-
tions on average. Overall, these results are encouraging, since our
approach only identifies those instructions that affect thebehavior
of the program. We anticipate that many of the “missed” instruc-
tions are performing functions like allocating memory or initializ-
ing data structures, and will not be caught by our analysis under any
conditions. Hand analysis reveals that some of the missed instruc-
tions result from instruction implementations whose equivalences
(see Section 3.1) were not anticipated. For example, somepush
andpop instructions were replaced withmov.

We note that, unlike the rest of our test programs, we were not
able to achieve our results for the md5 benchmark program through
totally automated means. The analysis of this program, evenon
the unprotected version, used excessive amounts of memory and
crashed. The problem resulted from some of the return valuesof
early calls tofopen and fread functions being used in later calcu-
lations. The resulting expressions were not able to be simplified
easily by our equational reasoning system, which resulted in larger
and larger expressions being generated late in the dynamic trace.
We would also like to note, however, that our equational reasoning
system allowed us to identify this problem easily, and also to se-
lect these function call return values for manual simplification. We
were able to make these simplifications in about an hour, and feel
that the results were still worth reporting.

We examined the results by hand, and found the reason for the
lower obfuscation scores on CodeVirtualizer files as compared to
VMProtect files. CodeVirtualizer uses an interesting technique that
artificially creates a dependency between some original program
instructions and the virtual machine interpreter instructions. We

believe that this may result from the use of constant values that are
stored in memory, and manipulated to add obfuscation. For ex-
ample, instructions that require the constant 1, may instead use a
reference to a variable that holds the value 1. Furthermore,if this
variable is modified every time it is used (e.g., it is incremented
then decremented just before use), this will create an artificial de-
pendency between the use of the value, and all previous instances
of manipulation. Of course, the obfuscator cannot change the func-
tion of the original program, so we believe these dependencies can
be identified. We have had some success using code simplification
techniques such as constant propagation and arithmetic simplifica-
tion, but work on this issue continues.

The results in both tables also show the extraordinary increase
in the number of executed instructions for both obfuscators. Our
toy fibonacci program, for example, executes 151 instructions in
the original trace. However, the VMProtect obfuscated version ex-
ecutes 16,438 instructions, and the CodeVirtualizer obfuscated ver-
sion executes 223,053.

4. DEFEATING OUR ANALYSIS
The previous discussion begins to answer an obvious question:

how would an attacker defeat our analysis? We must assume that
once our analysis is known, malware authors will attempt to exploit
its vulnerabilities. Our analysis is highly dependent on the output of
our equational reasoning system, which attempts to build simplified
equations for each instruction in the dynamic trace. In the case of
the md5 analysis, we have seen how calls tofopen andfread could
not be simplified away, leading to longer and longer expressions
later in the trace of both the unprotected and protected versions of
the test file. We have similar results when analyzing the CodeVirtu-
alizer protected versions of code, which stores important values in
encrypted form in memory, then decrypts these values beforeuse.
The decryption routine is difficult to simplify, and if properly cho-
sen, could similarly cause runtime and memory usage issues in the
equational reasoning system. Hence, any such algorithm, embed-
ded in the code, that cannot be simplified away has the potential to
cripple our analysis by making the problem impractical.

We have also seen how CodeVirtualizer builds artificial depen-
dencies between the virtual machine code and the original program

code. Since our analysis is based on the idea of separating these
two sets of instructions, successfully building such dependencies
has the effect of thwarting the analysis. If done properly, it may be
possible to build such dependencies between most, or all, instruc-
tions in the trace, thus driving our obfuscation scores toward 0%.
Because the obfuscation cannot change the function of the original
program, we speculate that such dependencies can, in theory, be
identified and handled. However, to date, we have not explored this
idea in depth, and leave such analysis for future work.

5. RELATED WORK
The deobfuscation of code obfuscated using virtualizationob-

fuscators has been discussed by Rolles [12], Sharifet al. [13], and
Falliere [6]. These works follow the outside-in approach outlined
in Section 1. Lau discusses the use of dynamic binary translation
to deal with virtualization obfuscators [9].

There has been some work, in the programming language com-
munity, on using a technique calledpartial evaluation[7] for code
specialization, in particular for specializing away interpretive code.
However, the literature assumes that the program analysis and trans-
formation are static, which suggests that its application to highly
obfuscated malware binaries may not be straightforward.

The notion of obfuscation through virtualization has some sim-
ilarities with the idea ofcontrol flow flattening[17]. Udupaet al.
discuss techniques for deobfuscating code that has been subjected
to this transformation [15]. These techniques are static, and there-
fore very different from the ideas presented here.

There is a rich body of work on various sorts of dependence anal-
ysis in the program analysis literature. The notion of ud-chains
for relating uses and definitions of variables during staticprogram
analysis is well-established [2]. There is an extensive body of lit-
erature on program slicing [14], but as discussed earlier this tech-
nique seems too imprecise for our needs.

6. CONCLUSIONS
Virtualization-obfuscated programs are difficult to reverse engi-

neer because examining the machine instructions of the program,
either statically or dynamically, does little to shed lighton the pro-
gram’s logic, which is hidden in the interpreted byte-code.Prior ap-
proaches to reverse-engineering virtualization-obfuscated programs
typically work by first reverse engineering the byte-code interpreter,
and then working back from this to work out the logic embedded
in the byte code. This paper describes a different approach that fo-
cuses on identifying the flow of values to system call instructions.
This new approach can be applied to a larger number of obfuscated
binaries because it makes fewer assumptions about the nature of the
virtual machine interpreter, and still produces good results on test
files including two malware executables and one benchmark util-
ity. On average, we identify 50% to 75% of instructions from the
original program, while eliminating approximately 75% to 90% of
instructions added by the obfuscator.

The system works by gradually adding instructions that are cal-
culated to be of importance, and adding these to a relevant sub-
trace that represents the behavior of the original, unobfuscated pro-
gram. Instructions that contribute to the values of system call argu-
ments are included, as are call/return pairs, and conditional control
flow statements. We note that our analysis only identifies condi-
tional control flow statements of the original program that appear
in the dynamic trace, and, thus, misses code paths that are not exe-
cuted. In principle, it should be possible to extend multi-path anal-
ysis techniques (see, e.g., [10]) to the conditionals so identified.
In practice, our intuition is that this will likely be challenging be-

cause virtualization-based obfuscation will mean that identifying
path constraints (as in Moser et al’s work) will not be straightfor-
ward. The issue is beyond the scope of this work, but would be
interesting and relevant for future work.

Acknowledgements
This work was supported in part by the National Science Founda-
tion via grant no. CNS-1016058, as well as by a GAANN fellow-
ship from the Department of Education award no. P200A070545.

7. REFERENCES
[1] VX Heavens, 2011.http://vx.netlux.org/.
[2] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers – Principles,

Techniques, and Tools. Addison-Wesley, Reading, Mass., 1985.
[3] F. Bellard. QEMU, a fast and portable dynamic translator. In

USENIX Annual Technical Conference, FREENIX Track, pages
41–46. USENIX, 2005.

[4] K. Coogan and S. Debray. Equational reasoning on x86
assembly code.Source Code Analysis and Manipulation, IEEE
International Workshop on, 2011.

[5] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization extensions.In
Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008, pages 51–62, 2008.

[6] N. Falliere. Inside the jaws of Trojan.Clampi. Technical
report, Symantec Corp., Nov. 2009.

[7] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation
and Automatic Program Generation. Prentice Hall, 1993.

[8] A. Lakhotia, E. U. Kumar, and M. Venable. A method for
detecting obfuscated calls in malicious binaries.IEEE
Transactions on Software Engineering, 31(11):955–968, 2005.

[9] B. Lau. Dealing with virtualization packer. InSecond CARO
Workshop on Packers, Decryptors, and Obfuscators, May 2008.

[10] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. InSP ’07: Proceedings
of the 2007 IEEE Symposium on Security and Privacy, pages
231–245, 2007.

[11] Oreans Technologies. Code virtualizer: Total obfuscation
against reverse engineering, Dec. 2008.
http://www.oreans.com/
codevirtualizer.php.

[12] R. Rolles. Unpacking virtualization obfuscators. InProc. 3rd
USENIX Workshop on Offensive Technologies (WOOT ’09),
Aug. 2009.

[13] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse
engineering of malware emulators. InProc. 2009 IEEE
Symposium on Security and Privacy, May 2009.

[14] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3:121–189, 1995.

[15] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation:
Reverse engineering obfuscated code. InProc. 12th IEEE
Working Conference on Reverse Engineering, pages 45–54,
Nov. 2005.

[16] VMProtect Software. Vmprotect software protection, 2008.
http://vmpsoft.com/.

[17] C. Wang, J. Davidson, J. Hill, and J. Knight. Protectionof
software-based survivability mechanisms. InProc.
International Conference of Dependable Systems and
Networks, July 2001.

